Rodrigues-type formulae for Hermite and Laguerre polynomials

نویسندگان

  • Vicenţiu RĂDULESCU
  • Vicenţiu Rădulescu
چکیده

In this paper we give new proofs of some elementary properties of the Hermite and Laguerre orthogonal polynomials. We establish Rodriguestype formulae and other properties of these special functions, using suitable operators defined on the Lie algebra of endomorphisms to the vector space of infinitely many differentiable functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic study on the AN−1- and BN-Calogero models with bosonic, fermionic and distinguishable particles

Abstract. Through an algebraic method using the Dunkl–Cherednik operators, the multivariable Hermite and Laguerre polynomials associated with the AN−1and BN Calogero models with bosonic, fermionic and distinguishable particles are investigated. The Rodrigues formulas of column type that algebraically generate the monic nonsymmetric multivariable Hermite and Laguerre polynomials corresponding to...

متن کامل

An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian

We introduce the so-called Clifford–Hermite polynomials in the framework of Dunkl operators, based on the theory of Clifford analysis. Several properties of these polynomials are obtained, such as a Rodrigues formula, a differential equation and an explicit relation connecting them with the generalized Laguerre polynomials. A link is established with the generalized Hermite polynomials related ...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

The Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients

In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...

متن کامل

The Calogero-sutherland Model and Generalized Classical Polynomials

Multivariable generalizations of the classical Hermite, Laguerre and Jacobi polynomials occur as the polynomial part of the eigenfunctions of certain Schrödinger operators for Calogero-Sutherland-type quantum systems. For the generalized Hermite and Laguerre polynomials the multidimensional analogues of many classical results regarding generating functions, differentiation and integration formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008